
Budget Feasible Mechanisms for Experimental Design

Thibaut Horel
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Abstract

In the classical experimental design setting, an experimenter E has access to a population of n
potential experiment subjects i ∈ {1, . . . , n}, each associated with a vector of features xi ∈ Rd.
Conducting an experiment with subject i reveals an unknown value yi ∈ R to E. E typically
assumes some hypothetical relationship between xi’s and yi’s, e.g., yi ≈ βTxi, and estimates β
from experiments, e.g., through linear regression. As a proxy for various practical constraints,
E may select only a subset of subjects on which to conduct the experiment.

We initiate the study of budgeted mechanisms for experimental design. In this setting, E
has a budget B. Each subject i declares an associated cost ci > 0 to be part of the experiment,
and must be paid at least her cost. In particular, the Experimental Design Problem (EDP) is
to find a set S of subjects for the experiment that maximizes V (S) = log det(Id +

∑
i∈S xix

T
i )

under the constraint
∑

i∈S ci ≤ B; our objective function corresponds to the information gain
in parameter β that is learned through linear regression methods, and is related to the so-called
D-optimality criterion. Further, the subjects are strategic and may lie about their costs. Thus,
we need to design a mechanism for EDP with suitable properties.

We present a deterministic, polynomial time, budget feasible mechanism scheme, that is ap-
proximately truthful and yields a constant (≈ 12.98) factor approximation to EDP. By applying
previous work on budget feasible mechanisms with a submodular objective, one could only have
derived either an exponential time deterministic mechanism or a randomized polynomial time
mechanism. We also establish that no truthful, budget-feasible mechanism is possible within a
factor 2 approximation, and show how to generalize our approach to a wide class of learning
problems, beyond linear regression.



1 Introduction

In the classic setting of experimental design [26, 4], an experimenter E has access to a population of
n potential experiment subjects. Each subject i ∈ {1, . . . , n} is associated with a set of parameters
(or features) xi ∈ Rd, known to the experimenter. E wishes to measure a certain inherent property
of the subjects by performing an experiment: the outcome yi of the experiment on a subject i is
unknown to E before the experiment is performed.

Typically, E has a hypothesis on the relationship between xi’s and yi’s. Due to its simplicity, as
well as its ubiquity in statistical analysis, a large body of work has focused on linear hypotheses:
i.e., it is assumed that there exists a β ∈ Rd such that

yi = βTxi + εi,

for all i ∈ {1, . . . , n}, where εi are zero-mean, i.i.d. random variables. Conducting the experiments
and obtaining the measurements yi lets E estimate β, e.g., through linear regression.

The above experimental design scenario has many applications. Regression over personal data
collected through surveys or experimentation is the cornerstone of marketing research, as well as
research in a variety of experimental sciences such as medicine and sociology. Crucially, statistical
analysis of user data is also a widely spread practice among Internet companies, which routinely
use machine learning techniques over vast records of user data to perform inference and classifi-
cation tasks integral to their daily operations. Beyond linear regression, there is a rich literature
about estimation procedures, as well as about means of quantifying the quality of the produced
estimate [26]. There is also an extensive theory on how to select subjects if E can conduct only a
limited number of experiments, so the estimation process returns a β that approximates the true
parameter of the underlying population [16, 21, 10, 7].

We depart from this classical setup by viewing experimental design in a strategic setting, and
by studying budgeted mechanism design issues. In our setting, experiments cannot be manipulated
and hence measurements are reliable. E has a total budget of B to conduct all the experiments.
There is a cost ci associated with experimenting on subject i which varies from subject to subject.
This cost ci is determined by the subject i and reported to E; subjects are strategic and may
misreport these costs. Intuitively, ci may be viewed as the cost i incurs when tested and for which
she needs to be reimbursed; or, it might be viewed as the incentive for i to participate in the
experiment; or, it might be the intrinsic worth of the data to the subject. The economic aspect of
paying subjects has always been inherent in experimental design: experimenters often work within
strict budgets and design creative incentives. Subjects often negotiate better incentives or higher
payments. However, we are not aware of a principled study of this setting from a strategic point
of view, when subjects declare their costs and therefore determine their payment. Such a setting
is increasingly realistic, given the growth of these experiments over the Internet.

Our contributions are as follows.

• We initiate the study of experimental design in the presence of a budget and strategic sub-
jects. In particular, we formulate the Experimental Design Problem (EDP) as follows: the
experimenter E wishes to find a set S of subjects to maximize

V (S) = log det
(
Id +

∑
i∈S

xix
T
i

)
(1)

subject to a budget constraint
∑

i∈S ci ≤ B, where B is E’s budget. When subjects are
strategic, the above problem can be naturally approached as a budget feasible mechanism
design problem, as introduced by Singer [29].
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The objective function, which is the key, is formally obtained by optimizing the information
gain in β when the latter is learned through ridge regression, and is related to the so-called
D-optimality criterion [26, 4].

• We present a polynomial time mechanism scheme for EDP that is approximately truthful
and yields a constant factor (≈ 12.98) approximation to the optimal value of (1). In contrast
to this, we show that no truthful, budget-feasible mechanisms are possible for EDP within a
factor 2 approximation.

We note that the objective (1) is submodular. Using this fact, applying previous results on
budget feasible mechanism design under general submodular objectives [29, 11] would yield
either a deterministic, truthful, constant-approximation mechanism that requires exponential
time, or a non-deterministic, (universally) truthful, poly-time mechanism that yields a con-
stant approximation ratio only in expectation (i.e., its approximation guarantee for a given
instance may in fact be unbounded).

From a technical perspective, we propose a convex optimization problem and establish that its
optimal value is within a constant factor from the optimal value of EDP. In particular, we show
our relaxed objective is within a constant factor from the so-called multi-linear extension of (1),
which in turn can be related to (1) through pipage rounding. We establish the constant factor to
the multi-linear extension by bounding the partial derivatives of these two functions; we achieve
the latter by exploiting convexity properties of matrix functions over the convex cone of positive
semidefinite matrices.

Our convex relaxation of EDP involves maximizing a self-concordant function subject to linear
constraints. Its optimal value can be computed with arbitrary accuracy in polynomial time using
the so-called barrier method. However, the outcome of this computation may not necessarily be
monotone, a property needed in designing a truthful mechanism. Nevetheless, we construct an
algorithm that solves the above convex relaxation and is “almost” monotone; we achieve this by
applying the barrier method on a set perturbed constraints, over which our objective is “sufficiently”
concave. In turn, we show how to employ this algorithm to design a poly-time, δ-truthful, constant-
approximation mechanism for EDP.

In what follows, we describe related work in Section 2. We briefly review experimental design
and budget feasible mechanisms in Section 3 and define EDP formally. We present our convex
relaxation to EDP in Section 4 and use it to construct our mechanism in Section 5. We conclude
in Section 6. All proofs of our technical results are provided in the appendix.

2 Related work

Budget Feasible Mechanisms for General Submodular Functions Budget feasible mech-
anism design was originally proposed by Singer [29]. Singer considers the problem of maximizing
an arbitrary submodular function subject to a budget constraint in the value query model, i.e.
assuming an oracle providing the value of the submodular objective on any given set. Singer shows
that there exists a randomized, 112-approximation mechanism for submodular maximization that
is universally truthful (i.e., it is a randomized mechanism sampled from a distribution over truthful
mechanisms). Chen et al. [11] improve this result by providing a 7.91-approximate mechanism,
and show a corresponding lower bound of 2 among universally truthful randomized mechanisms for
submodular maximization.

The above approximation guarantees hold for the expected value of the randomized mech-
anism: for a given instance, the approximation ratio provided by the mechanism may in fact be
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unbounded. No deterministic, truthful, constant approximation mechanism that runs in polynomial
time is presently known for submodular maximization. However, assuming access to an oracle pro-
viding the optimum in the full-information setup, Chen et al., propose a truthful, 8.34-approximate
mechanism; in cases for which the full information problem is NP-hard, as the one we consider
here, this mechanism is not poly-time, unless P=NP. Chen et al. also prove a 1 +

√
2 lower bound

for truthful deterministic mechanisms, improving upon an earlier bound of 2 by Singer [29].

Budget Feasible Mechanism Design on Specific Problems Improved bounds, as well as
deterministic polynomial mechanisms, are known for specific submodular objectives. For symmetric
submodular functions, a truthful mechanism with approximation ratio 2 is known, and this ratio
is tight [29]. Singer also provides a 7.32-approximate truthful mechanism for the budget feasible
version of Matching, and a corresponding lower bound of 2 [29]. Improving an earlier result by
Singer, Chen et al. [11] give a truthful, 2+

√
2-approximate mechanism for Knapsack, and a lower

bound of 1 +
√

2. Finally, a truthful, 31-approximate mechanism is also known for the budgeted
version of Coverage [30].

The deterministic mechanisms for Knapsack [11] and Coverage [30] follow the same general
framework, which we also employ in our mechanism for EDP. We describe this framework in detail in
Section 5. Both of these mechanisms rely on approximating the optimal solution to the underlying
combinatorial problem by a well-known linear program (LP) relaxation [1], which can be solved
exactly in polynomial time. No such relaxation exists for EDP, which unlikely to be approximable
through an LP due to its logarithmic objective. We develop instead a convex relaxation to EDP;
though, contrary to the above LP relaxations, this cannot be solved exactly, we establish that it
can be incorporated in the framework of [11, 30] to yield a δ-truthful mechanism for EDP.

Beyond Submodular Objectives Beyond submodular objectives, it is known that no truthful
mechanism with approximation ratio smaller than n1/2−ε exists for maximizing fractionally sub-
additive functions (a class that includes submodular functions) assuming access to a value query
oracle [29]. Assuming access to a stronger oracle (the demand oracle), there exists a truthful,
O(log3 n)-approximate mechanism [12] as well as a universally truthful, O( logn

log logn)-approximate
mechanism for subadditive maximization [6]. Moreover, in a Bayesian setup, assuming a prior dis-
tribution among the agent’s costs, there exists a truthful mechanism with a 768/512-approximation
ratio [6]. Posted price, rather than direct revelation mechanisms, are also studied in [5].

Monotone Approximations in Combinatorial Auctions Relaxations of combinatorial prob-
lems are prevalent in combinatorial auctions, in which an auctioneer aims at maximizing a set
function which is the sum of utilities of strategic bidders (i.e., the social welfare). As noted by
Archer et al. [3], approximations to this maximization must preserve incentive compatibility and
truthfulness. Most approximation algorithms do not preserve these properties, hence specific re-
laxations, and corresponding roundings to an integral solution, must be constructed. Archer et al.
[3] propose a randomized rounding of the LP relaxation of the SetPacking problem, yielding a
mechanism which is truthful-in-expectation. Lavi and Swamy [20] construct randomized truthful-
in-expectation mechanisms for several combinatorial auctions, improving the approximation ratio
in [3], by treating the fractional solution of an LP as a probability distribution from which they
sample integral solutions.

Beyond LP relaxations, Dughmi et al. [14] propose truthful-in-expectation mechanisms for com-
binatorial auctions in which the bidders’ utilities are matroid rank sum functions (applied earlier
to the CombinatorialPublicProjects problem [13]). Their framework relies on solving a con-
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vex optimization problem which can only be solved approximately. As in [20], they also treat
the fractional solution as a distribution over which they sample integral solutions. The authors
ensure that a solver is applied to a “well-conditioned” problem, which resembles the technical chal-
lenge we face in Section 4.2. However, we seek a deterministic mechanism and δ-truthfulness, not
truthfulness-in-expectation. In addition, our objective is not a matroid rank sum function. As
such, both the methodology for dealing with problems that are not “well-conditioned” as well as
the approximation guarantees of the convex relaxation in [14] do not readily extend to EDP.

Briest et al. [8] construct monotone FPTAS for problems that can be approximated through
rounding techniques, which in turn can be used to construct truthful, deterministic, constant-
approximation mechanisms for corresponding combinatorial auctions. EDP is not readily approx-
imable through such rounding techniques; as such, we rely on a relaxation to approximate it.

δ-Truthfulness and Differential Privacy The notion of δ-truthfulness has attracted consid-
erable attention recently in the context of differential privacy (see, e.g., the survey by Pai and
Roth [25]). McSherry and Talwar [22] were the first to observe that any ε-differentially private
mechanism must also be δ-truthful in expectation, for δ = 2ε. This property was used to construct
δ-truthful (in expectation) mechanisms for a digital goods auction [22] and for α-approximate equi-
librium selection [17]. Nissim et al. [24] propose a framework for converting a differentially private
mechanism to a truthful-in-expectation mechanism by randomly selecting between a differentially
private mechanism with good approximation guarantees, and a truthful mechanism. They apply
their framework to the FacilityLocation problem. We depart from the above works in seeking
a deterministic mechanism for EDP, and using a stronger notion of δ-truthfulness.

3 Preliminaries

3.1 Linear Regression and Experimental Design

The theory of experimental design [26, 4, 10] considers the following formal setting. Suppose
that an experimenter E wishes to conduct k among n possible experiments. Each experiment
i ∈ N ≡ {1, . . . , n} is associated with a set of parameters (or features) xi ∈ Rd, normalized so that

b ≤ ‖xi‖22 ≤ 1,

for some b > 0. Denote by S ⊆ N , where |S| = k, the set of experiments selected; upon its
execution, experiment i ∈ S reveals an output variable (the “measurement”) yi, related to the
experiment features xi through a linear function, i.e.,

∀i ∈ N , yi = βTxi + εi (2)

where β is a vector in Rd, commonly referred to as the model, and εi (the measurement noise) are
independent, normally distributed random variables with mean 0 and variance σ2.

For example, each i may correspond to a human subject; the feature vector xi may correspond
to a normalized vector of her age, weight, gender, income, etc., and the measurement yi may capture
some biometric information (e.g., her red cell blood count, a genetic marker, etc.). The magnitude
of the coefficient βi captures the effect that feature i has on the measured variable, and its sign
captures whether the correlation is positive or negative.

The purpose of these experiments is to allow E to estimate the model β. In particular, assume
that the experimenter E has a prior distribution on β, i.e., β has a multivariate normal prior
with zero mean and covariance σ2R−1 ∈ Rd2 (where σ2 is the noise variance). Then, E estimates

4



β through maximum a posteriori estimation: i.e., finding the parameter which maximizes the
posterior distribution of β given the observations yS . Under the linearity assumption (2) and the
Gaussian prior on β, maximum a posteriori estimation leads to the following maximization [15]:

β̂ = arg max
β∈Rd

Pr(β | yS) = arg min
β∈Rd

(∑
i∈S

(yi − βTxi)2 + βTRβ
)

= (R+XT
SXS)−1XT

S yS (3)

where the last equality is obtained by setting ∇βPr(β | yS) to zero and solving the resulting linear
system; in (3), XS ≡ [xi]i∈S ∈ R|S|×d is the matrix of experiment features and yS ≡ [yi]i∈S ∈ R|S|
are the observed measurements. This optimization, commonly known as ridge regression, includes
an additional quadratic penalty term βTRβ compared to the standard least squares estimation.

Let V : 2N → R be a value function, quantifying how informative a set of experiments S
is in estimating β. The classical experimental design problem amounts to finding a set S that
maximizes V (S) subject to the constraint |S| ≤ k. A variety of different value functions are used
in literature [26, 7]; one that has natural advantages is the information gain:

V (S) = I(β; yS) = H(β)−H(β | yS). (4)

which is the entropy reduction on β after the revelation of yS (also known as the mutual information
between yS and β). Hence, selecting a set of experiments S that maximizes V (S) is equivalent to
finding the set of experiments that minimizes the uncertainty on β, as captured by the entropy
reduction of its estimator. Under the linear model (2), and the Gaussian prior, the information
gain takes the following form (see, e.g., [10]):

I(β; yS) =
1

2
log det(R+XT

SXS)− 1

2
log detR (5)

Maximizing I(β; yS) is therefore equivalent to maximizing log det(R +XT
SXS), which is known in

the experimental design literature as the Bayes D-optimality criterion [26, 4, 10].
Our analysis will focus on the case of a homotropic prior, in which the prior covariance is the

identity matrix, i.e., R = Id ∈ Rd×d. Intuitively, this corresponds to the simplest prior, in which
no direction of Rd is a priori favored; equivalently, it also corresponds to the case where ridge
regression estimation (3) performed by E has a penalty term ‖β‖22. A generalization of our results
to arbitrary covariance matrices R can be found in Appendix H.

3.2 Budget-Feasible Experimental Design: Full Information Case

Instead of the cardinality constraint in classical experimental design discussed above, we consider
a budget-constrained version. Each experiment is associated with a cost ci ∈ R+. The cost ci
can capture, e.g., the amount the subject i deems sufficient to incentivize her participation in the
experiment. The experimenter E is limited by a budget B ∈ R+. In the full-information case,
experiment costs are common knowledge; as such, the experimenter wishes to solve:

ExperimentalDesignProblem (EDP)

Maximize V (S) = log det(Id +XT
SXS) (6a)

subject to
∑
i∈S

ci ≤ B (6b)

W.l.o.g., we assume that ci ∈ [0, B] for all i ∈ N , as no i with ci > B can be in an S satisfying
(6b). Denote by

OPT = max
S⊆N

{
V (S)

∣∣∣ ∑
i∈S

ci ≤ B
}

(7)
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the optimal value achievable in the full-information case. EDP, as defined above, is NP-hard; to
see this, note that Knapsack reduces to EDP with dimension d = 1 by mapping the weight of
each item, say, wi, to an experiment with x2

i = wi.
The value function (6a) has the following properties, which are proved in Appendix A. First, it

is non-negative, i.e., V (S) ≥ 0 for all S ⊆ N . Second, it is also monotone, i.e., V (S) ≤ V (T ) for all
S ⊆ T , with V (∅) = 0. Finally, it is submodular, i.e., V (S∪{i})−V (S) ≥ V (T ∪{i})−V (T ) for all
S ⊆ T ⊆ N and i ∈ N . The above imply that a greedy algorithm yields a constant approximation
ratio to EDP. In particular, consider the greedy algorithm in which, for S ⊆ N the set constructed
thus far, the next element i included is the one which maximizes the marginal-value-per-cost, i.e.,
i = arg maxj∈N\S (V (S ∪ {i})− V (S))/ci. This is repeated until adding an element in S exceeds
the budget B. Denote by SG the set constructed by this heuristic and let i∗ = arg maxi∈N V ({i})
be the element of maximum singleton value. Then, the following algorithm:

if V ({i∗}) ≥ V (SG) return {i∗} else return SG (8)

yields an approximation ratio of 5e
e−1 [29]; this can be further improved to e

e−1 using more compli-
cated greedy set constructions [18, 31].

3.3 Budget-Feasible Experimental Design: Strategic Case

We study the following strategic setting, in which the costs ci are not common knowledge and
their reporting can be manipulated by the experiment subjects. The latter are strategic and wish
to maximize their utility, which is the difference of the payment they receive and their true cost.
We note that, though subjects may misreport ci, they cannot lie about xi (i.e., all public features
are verifiable prior to the experiment) nor yi (i.e., the subject cannot falsify her measurement).
In this setting, experimental design reduces to a budget feasible reverse auction, as introduced by
Singer [29]; we review the formal definition in Appendix D. In short, given a budget B and a
value function V : 2N → R+, a reverse auction mechanism M = (S, p) comprises (a) an allocation
function1 S : Rn+ → 2N , determining the set of experiments to be purchased, and (b) a payment
function p : Rn+ → Rn+, determining the payments [pi(c)]i∈N received by experiment subjects.

We seek mechanisms that are normalized (unallocated experiments receive zero payments),
individually rational (payments for allocated experiments exceed costs), have no positive transfers
(payments are non-negative), and are budget feasible (the sum of payments does not exceed the
budget B). We relax the notion of truthfulness to δ-truthfulness, requiring that reporting one’s
true cost is an almost-dominant strategy: no subject increases their utility by reporting a cost that
differs more than δ > 0 from their true cost. Under this definition, a mechanism is truthful if δ = 0.
In addition, we would like the allocation S(c) to be of maximal value; however, δ-truthfulness,
as well as the hardness of EDP, preclude achieving this goal. Hence, we seek mechanisms with
that are (α, β)-approximate, i.e., there exist α ≥ 1 and β > 0 s.t. OPT ≤ αV (S(c)) + β, and are
computationally efficient, in that S and p can be computed in polynomial time.

We note that the constant approximation algorithm (8) breaks truthfulness. Though this is not
true for all submodular functions (see, e.g., [29]), it is true for the objective of EDP: we show this
in Appendix I. This motivates our study of more complex mechanisms.

1Note that S would be more aptly termed as a selection function, as this is a reverse auction, but we retain the
term “allocation” to align with the familiar term from standard auctions.
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4 Approximation Results

Previous approaches towards designing truthful, budget feasible mechanisms for Knapsack [11]
and Coverage [30] build upon polynomial-time algorithms that compute an approximation of
OPT , the optimal value in the full information case. Crucially, to be used in designing a truthful
mechanism, such algorithms need also to be monotone, in the sense that decreasing any cost ci leads
to an increase in the estimation of OPT ; the monotonicity property precludes using traditional
approximation algorithms.

In the first part of this section, we address this issue by designing a convex relaxation of EDP,
and showing that its solution can be used to approximate OPT . The objective of this relaxation
is concave and self-concordant [7] and, as such, there exists an algorithm that solves this relaxed
problem with arbitrary accuracy in polynomial time. Unfortunately, the output of this algorithm
may not necessarily be monotone. Nevertheless, in the second part of this section, we show that
a solver of the relaxed problem can be used to construct a solver that is “almost” monotone. In
Section 5, we show that this algorithm can be used to design a δ-truthful mechanism for EDP.

4.1 A Convex Relaxation of EDP

A classical way of relaxing combinatorial optimization problems is relaxing by expectation, using
the so-called multi-linear extension of the objective function V (see, e.g., [9, 34, 14]). This is
because this extension can yield approximation guarantees for a wide class of combinatorial prob-
lems through pipage rounding, a technique proposed by Ageev and Sviridenko [1]. Crucially for
our purposes, such relaxations in general preserve monotonicity which, as discussed, is required in
mechanism design.

Formally, let P λN be a probability distribution over N parametrized by λ ∈ [0, 1]n, where
a set S ⊆ N sampled from P λN is constructed as follows: each i ∈ N is selected to be in S
independently with probability λi, i.e., P λN (S) ≡

∏
i∈S λi

∏
i∈N\S(1 − λi). Then, the multi-linear

extension F : [0, 1]n → R of V is defined as the expectation of V under the distribution P λN :

F (λ) ≡ ES∼PλN
[
V (S)

]
= ES∼PλN

[
log det

(
Id +

∑
i∈S

xix
T
i

)]
, λ ∈ [0, 1]n. (9)

Function F is an extension of V to the domain [0, 1]n, as it equals V on integer inputs: F (1S) =
V (S) for all S ⊆ N , where 1S denotes the indicator vector of S. Contrary to problems such as
Knapsack, the multi-linear extension (9) cannot be optimized in polynomial time for the value
function V we study here, given by (6a). Hence, we introduce an extension L : [0, 1]n → R s.t.

L(λ) ≡ log det

(
Id +

∑
i∈N

λixix
T
i

)
= log det

(
ES∼PλN

[
Id +

∑
i∈S

xix
T
i

])
, λ ∈ [0, 1]n. (10)

Note that L also extends V , and follows naturally from the multi-linear extension by swapping the
expectation and log det in (9). Crucially, it is strictly concave on [0, 1]n, a fact that we exploit in
the next section to maximize L subject to the budget constraint in polynomial time.

Our first technical lemma relates the concave extension L to the multi-linear extension F :

Lemma 1. For all λ ∈ [0, 1]n, 1
2 L(λ) ≤ F (λ) ≤ L(λ).

The proof of this lemma can be found in Appendix B.1. In short, exploiting the concavity of
the log det function over the set of positive semi-definite matrices, we first bound the ratio of all
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partial derivatives of F and L. We then show that the bound on the ratio of the derivatives also
implies a bound on the ratio F/L.

Armed with this result, we subsequently use pipage rounding to show that any λ that maximizes
the multi-linear extension F can be rounded to an “almost” integral solution. More specifically,
given a set of costs c ∈ Rn+, we say that a λ ∈ [0, 1]n is feasible if it belongs to the set

Dc = {λ ∈ [0, 1]n :
∑
i∈N

ciλi ≤ B}. (11)

Then, the following lemma holds:

Lemma 2 (Rounding). For any feasible λ ∈ Dc, there exists a feasible λ̄ ∈ Dc such that (a)
F (λ) ≤ F (λ̄), and (b) at most one of the coordinates of λ̄ is fractional.

The proof of this lemma is in Appendix B.2, and follows the main steps of the pipage rounding
method of Ageev and Sviridenko [1]. Together, Lemma 1 and Lemma 2 imply that OPT , the
optimal value of EDP, can be approximated by solving the following convex optimization problem:

Maximize: L(λ)

subject to: λ ∈ Dc
(Pc)

In particular, for L∗c ≡ maxλ∈Dc L(λ) the optimal value of (Pc), the following holds:

Proposition 1. OPT ≤ L∗c ≤ 2OPT + 2 maxi∈N V (i).

The proof of this proposition can be found in Appendix B.3. As we discuss in the next section,
L∗c can be computed by a poly-time algorithm at arbitrary accuracy. However, the outcome of
this computation may not necessarily be monotone; we address this by converting this poly-time
estimator of L∗c to one that is “almost” monotone.

4.2 Polynomial-Time, Almost-Monotone Approximation

The log det objective function of (Pc) is strictly concave and self-concordant [7]. The maximization
of a concave, self-concordant function subject to a set of linear constraints can be performed through
the barrier method (see, e.g., [7] Section 11.5.5 for general self-concordant optimization as well as
[33] for a detailed treatment of the log det objective). The performance of the barrier method is
summarized in our case by the following lemma:

Lemma 3 (Boyd and Vandenberghe [7]). For any ε > 0, the barrier method computes an approxi-
mation L̂∗c that is ε-accurate, i.e., it satisfies |L̂∗c −L∗c | ≤ ε, in time O

(
poly(n, d, log log ε−1)

)
. The

same guarantees apply when maximizing L subject to an arbitrary set of O(n) linear constraints.

Clearly, the optimal value L∗c of (Pc) is monotone in c: formally, for any two c, c′ ∈ Rn+ s.t. c ≤
c′ coordinate-wise, Dc′ ⊆ Dc and thus L∗c ≥ L∗c′ . Hence, the map c 7→ L∗c is non-increasing.

Unfortunately, the same is not true for the output L̂∗c of the barrier method: there is no guarantee
that the ε-accurate approximation L̂∗c exhibits any kind of monotonicity.

Nevertheless, we prove that it is possible to use the barrier method to construct an approxima-
tion of L∗c that is “almost” monotone. More specifically, given δ > 0, we say that f : Rn → R is
δ-decreasing if f(x) ≥ f(x+ µei), for all i ∈ N , x ∈ Rn, µ ≥ δ, where ei is the i-th canonical basis
vector of Rn. In other words, f is δ-decreasing if increasing any coordinate by δ or more at input
x ensures that the output will be at most f(x).
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Algorithm 1

Input: B ∈ R+, c ∈ [0, B]n, δ ∈ (0, 1], ε ∈ (0, 1]
1: α← ε(δ/B + n2)−1

2: Use the barrier method to solve (Pc,α) with accuracy ε′ = 1
2n+1B

αδb; denote the output by L̂∗c,α
3: return L̂∗c,α

Our next technical result establishes that, using the barrier method, it is possible to construct
an algorithm that computes L∗c at arbitrary accuracy in polynomial time and is δ-decreasing. We
achieve this by restricting the optimization over a subset of Dc at which the concave relaxation L
is “sufficiently” concave. Formally, for α ≥ 0 let

Dc,α ≡ {λ ∈ [α, 1]n :
∑

i∈N ciλi ≤ B} ⊆ Dc.

Note that Dc = Dc,0. Consider the following perturbation of the concave relaxation (Pc):

Maximize: L(λ)

subject to: λ ∈ Dc,α
(Pc,α)

Our construction of a δ-decreasing, ε-accurate approximator of L∗c proceeds as follows: first,
it computes an appropriately selected lower bound α; using this bound, it solves the perturbed
problem (Pc,α) using the barrier method, also at an appropriately selected accuracy ε′, obtaining
thus a ε′-accurate approximation of L∗c,α ≡ maxλ∈Dc,α L(λ) . The corresponding output is returned
as an approximation of L∗c . A summary of the algorithm and the specific choices of α and ε′ are
given in Algorithm 1. The following proposition, which is proved in Appendix C, establishes that
this algorithm has both properties we desire:

Proposition 2. For any δ ∈ (0, 1] and any ε ∈ (0, 1], Algorithm 1 computes a δ-decreasing,
ε-accurate approximation of L∗c . The running time of the algorithm is O

(
poly(n, d, log log B

bεδ )
)
.

We note that the execution of the barrier method on the restricted set Dc,α is necessary. The
algorithm’s output when executed over the entire domain may not necessarily be δ-decreasing,
even when the approximation accuracy is small. This is because costs become saturated when the
optimal λ ∈ Dc lies at the boundary: increasing them has no effect on the objective. Forcing the
optimization to happen “off” the boundary ensures that this does not occur, while taking α to be
small ensures that this perturbation does not cost much in terms of approximation accuracy.

5 Mechanism for EDP

In this section we use the δ-decreasing, ε-accurate algorithm solving the convex optimization prob-
lem (Pc) to design a mechanism for EDP. The construction follows a methodology proposed in [29]
and employed by Chen et al. [11] and Singer [30] to construct deterministic, truthful mechanisms
for Knapsack and Coverage respectively. We briefly outline this below (see also Algorithm 2 in
Appendix F for a detailed description).

Recall from Section 3.2 that i∗ ≡ arg maxi∈N V ({i}) is the element of maximum value, and SG is
a set constructed greedily, by selecting elements of maximum marginal value per cost. The general
framework used by Chen et al. [11] and by Singer [30] for the Knapsack and Coverage value
functions contructs an allocation as follows. First, a polynomial-time, monotone approximation of
OPT is computed over all elements excluding i∗. The outcome of this approximation is compared to

9



V ({i∗}): if it exceeds V ({i∗}), then the mechanism constructs an allocation SG greedily; otherwise,
the only item allocated is the singleton {i∗}. Provided that the approximation used is within a
constant from OPT , the above allocation can be shown to also yield a constant approximation to
OPT . Furthermore, using Myerson’s Theorem [23], it can be shown that this allocation combined
with threshold payments (see Lemma 4 below) constitute a truthful mechanism.

The approximation algorithms used in [11, 30] are LP relaxations, and thus their outputs are
monotone and can be computed exactly in polynomial time. We show that the convex relaxation
(Pc), which can be solved by an ε-accurate, δ-decreasing algorithm, can be used to construct a
δ-truthful, constant approximation mechanism, by being incorporated in the same framework.

To obtain this result, we use the following modified version of Myerson’s theorem [23], whose
proof we provide in Appendix E.

Lemma 4. A normalized mechanism M = (S, p) for a single parameter auction is δ-truthful if:
(a) S is δ-monotone, i.e., for any agent i and c′i ≤ ci − δ, for any fixed costs c−i of agents in
N \ {i}, i ∈ S(ci, c−i) implies i ∈ S(c′i, c−i), and (b) agents are paid threshold payments, i.e., for
all i ∈ S(c), pi(c) = inf{c′i : i ∈ S(c′i, c−i)}.

Lemma 4 allows us to incorporate our relaxation in the above framework, yielding the following
theorem:

Theorem 1. For any δ ∈ (0, 1], and any ε ∈ (0, 1], there exists a δ-truthful, individually rational
and budget feasible mechanim for EDP that runs in time O

(
poly(n, d, log log B

bεδ )
)

and allocates a

set S∗ such that OPT ≤ 10e−3+
√

64e2−24e+9
2(e−1) V (S∗) + ε ' 12.98V (S∗) + ε.

The proof of the theorem, as well as our proposed mechanism, can be found in Appendix F. In
addition, we prove the following simple lower bound, proved in Appendix G.

Theorem 2. There is no 2-approximate, truthful, budget feasible, individually rational mechanism
for EDP.

6 Conclusions

We have proposed a convex relaxation for EDP, and showed that it can be used to design a δ-
truthful, constant approximation mechanism that runs in polynomial time. Our objective function,
commonly known as the Bayes D-optimality criterion, is motivated by linear regression, and in
particular captures the information gain when experiments are used to learn a linear model.

A natural question to ask is to what extent the results we present here generalize to other ma-
chine learning tasks beyond linear regression. We outline a path in pursuing such generalizations in
Appendix H. In particular, although the information gain is not generally a submodular function,
we show that for a wide class of models, in which experiments outcomes are perturbed by indepen-
dent noise, the information gain indeed exhibits submodularity. Several important learning tasks
fall under this category, including generalized linear regression, logistic regression, etc. In light of
this, it would be interesting to investigate whether our convex relaxation approach generalizes to
other learning tasks in this broader class.

The literature on experimental design includes several other optimality criteria [26, 4]. Our
convex relaxation (10) involved swapping the log det scalarization with the expectation appearing in
the multi-linear extension (9). The same swap is known to yield concave objectives for several other
optimality criteria, even when the latter are not submodular (see, e.g., Boyd and Vandenberghe [7]).
Exploiting the convexity of such relaxations to design budget feasible mechanisms is an additional
open problem of interest.
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[8] P. Briest, P. Krysta, and B. Vöcking. Approximation techniques for utilitarian mechanism
design. In Proceedings of the thirty-seventh annual ACM symposium on Theory of computing,
page 39–48, 2005. 4

[9] G. Calinescu, C. Chekuri, M. Pál, and J. Vondrák. Maximizing a submodular set function
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A Properties of the Value Function V

For the sake of concreteness, we prove below the positivity, monotonicity, and submodularity of
V (S) = log det(Id + XT

SXS) from basic principles. We note however that these properties hold
more generally for the information gain under a wider class of models than the linear model with
Gaussian noise and prior that we study here: we discuss this in more detail in Appendix H.

For two symmetric matrices A and B, we write A � B (A � B) if A − B is positive definite
(positive semi-definite). This order allows us to define the notion of a decreasing as well as convex
matrix function, similarly to their real counterparts. With this definition, matrix inversion is
decreasing and convex over symmetric positive definite matrices (see Example 3.48 p. 110 in [7]).

Recall that the determinant of a matrix equals the product of its eigenvalues. The positivity
of V (S) follows from the fact that XT

SXS is positive semi-definite and, as such Id + XT
SXS � Id,

so all its eigenvalues are larger than or equal to one, and they are all one if S = ∅. The marginal
contribution of item i ∈ N to set S ⊆ N can be written as

V (S ∪ {i})− V (S) =
1

2
log det(Id +XT

SXS + xix
T
i )− 1

2
log det(Id +XT

SXS)

=
1

2
log det(Id + xix

T
i (Id +XT

SXS)−1) =
1

2
log(1 + xTi A(S)−1xi) (12)

where A(S) ≡ Id+XT
SXS , and the last equality follows from the Sylvester’s determinant identity [2].

Monotonicity therefore follows from the fact that A(S)−1 is positive semidefinite. Finally, since the
inverse is decreasing over positive definite matrices, we have

∀S ⊆ N , A(S)−1 � A(S ∪ {i})−1. (13)

and submodularity also follows, as a function is submodular if and only if the marginal contributions
are non-increasing in S.

B Proofs of Statements in Section 4.1

B.1 Proof of Lemma 1

The bound F (λ) ≤ L(λ) follows by the concavity of the log det function and Jensen’s inequality.
To show the lower bound, we first prove that 1

2 is a lower bound of the ratio ∂iF (λ)/∂iL(λ), where

we use ∂i · as a shorthand for ∂
∂λi

, the partial derivative with respect to the i-th variable.
Let us start by computing the partial derivatives of F and L with respect to the i-th component.

Observe that

∂iP
λ
N (S) =

{
P λN\{i}(S \ {i}) if i ∈ S,

− P λN\{i}(S) if i ∈ N \ S.

Hence,

∂iF (λ) =
∑
S⊆N
i∈S

P λN\{i}(S \ {i})V (S)−
∑
S⊆N
i∈N\S

P λN\{i}(S)V (S).
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Now, using that every S such that i ∈ S can be uniquely written as S′ ∪ {i}, we can write:

∂iF (λ) =
∑
S⊆N
i∈N\S

P λN\{i}(S)
(
V (S ∪ {i})− V (S)

)
.

Recall from (12) that the marginal contribution of i to S is given by

V (S ∪ {i})− V (S) =
1

2
log(1 + xTi A(S)−1xi),

where A(S) = Id +XT
SXS . Using this,

∂iF (λ) =
1

2

∑
S⊆N
i∈N\S

P λN\{i}(S) log
(

1 + xTi A(S)−1xi

)

The computation of the derivative of L uses standard matrix calculus: writing Ã(λ) ≡ Id +∑
i∈N λixix

T
i ,

det Ã(λ+ h · ei) = det
(
Ã(λ) + hxix

T
i

)
= det Ã(λ)

(
1 + hxTi Ã(λ)−1xi

)
.

Hence,
log det Ã(λ+ h · ei) = log det Ã(λ) + hxTi Ã(λ)−1xi + o(h),

which implies

∂iL(λ) =
1

2
xTi Ã(λ)−1xi.

Recall from (13) that the monotonicity of the matrix inverse over positive definite matrices implies

∀S ⊆ N , A(S)−1 � A(S ∪ {i})−1

as A(S) � A(S ∪ {i}). Observe that since 1 ≤ λi ≤ 1, P λN\{i}(S) ≥ P λN (S) and P λN\{i}(S) ≥
P λN (S ∪ {i}) for all S ⊆ N \ {i}. Hence,

∂iF (λ) ≥ 1

4

∑
S⊆N
i∈N\S

P λN (S) log
(

1 + xTi A(S)−1xi

)
+

1

4

∑
S⊆N
i∈N\S

P λN (S ∪ {i}) log
(

1 + xTi A(S ∪ {i})−1xi

)

≥ 1

4

∑
S⊆N

P λN (S) log
(

1 + xTi A(S)−1xi

)
.

Using that A(S) � Id we get that xTi A(S)−1xi ≤ ‖xi‖22 ≤ 1. Moreover, log(1 +x) ≥ x for all x ≤ 1.
Hence,

∂iF (λ) ≥ 1

4
xTi

( ∑
S⊆N

P λN (S)A(S)−1

)
xi.

Finally, using that the inverse is a matrix convex function over symmetric positive definite matrices
(see Appendix A):

∂iF (λ) ≥ 1

4
xTi

( ∑
S⊆N

P λN (S)A(S)

)−1

xi =
1

4
xTi Ã(λ)−1xi =

1

2
∂iL(λ).
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Having bound the ratio between the partial derivatives, we now bound the ratio F (λ)/L(λ)
from below. Consider the following three cases.

First, if the minimum is attained as λ converges to zero in, e.g., the l2 norm, by the Taylor
approximation, one can write:

F (λ)

L(λ)
∼λ→0

∑
i∈N λi∂iF (0)∑
i∈N λi∂iL(0)

≥ 1

2
,

i.e., the ratio F (λ)
L(λ) is necessarily bounded from below by 1/2 for small enough λ.

Second, if the minimum of the ratio F (λ)/L(λ) is attained at a vertex of the hypercube [0, 1]n

different from 0. F and L being relaxations of the value function V , they are equal to V on the
vertices which are exactly the binary points. Hence, the minimum is equal to 1 in this case; in
particular, it is greater than 1/2.

Finally, if the minimum is attained at a point λ∗ with at least one coordinate belonging to
(0, 1), let i be one such coordinate and consider the function Gi:

Gi : x 7→ F

L
(λ∗1, . . . , λ

∗
i−1, x, λ

∗
i+1, . . . , λ

∗
n).

Then this function attains a minimum at λ∗i ∈ (0, 1) and its derivative is zero at this point. Hence:

0 = G′i(λ
∗
i ) = ∂i

(
F

L

)
(λ∗).

But ∂i(F/L)(λ∗) = 0 implies that

F (λ∗)

L(λ∗)
=
∂iF (λ∗)

∂iL(λ∗)
≥ 1

2

using the lower bound on the ratio of the partial derivatives. This concludes the proof of the
lemma.

B.2 Proof of Lemma 2

We give a rounding procedure which, given a feasible λ with at least two fractional components,
returns some feasible λ′ with one fewer fractional component such that F (λ) ≤ F (λ′).

Applying this procedure recursively yields the lemma’s result. Let us consider such a feasible
λ. Let i and j be two fractional components of λ and let us define the following function:

Fλ(ε) = F (λε) where λε = λ+ ε

(
ei −

ci
cj
ej

)
It is easy to see that if λ is feasible, then:

∀ε ∈
[

max
(
− λi, (λj − 1)

cj
ci

)
,min

(
1− λi, λj

cj
ci

)]
, λε is feasible (14)

Furthermore, the function Fλ is convex; indeed:

Fλ(ε) = ES′∼PλN\{i,j}(S′)
[
(λi + ε)

(
λj − ε

ci
cj

)
V (S′ ∪ {i, j})

+ (λi + ε)
(

1− λj + ε
ci
cj

)
V (S′ ∪ {i}) + (1− λi − ε)

(
λj − ε

ci
cj

)
V (S′ ∪ {j})

+ (1− λi − ε)
(

1− λj + ε
ci
cj

)
V (S′)

]
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Thus, Fλ is a degree 2 polynomial whose dominant coefficient is:

ci
cj
ES′∼PλN\{i,j}(S′)

[
V (S′ ∪ {i}) + V (S′ ∪ {i})− V (S′ ∪ {i, j})− V (S′)

]
which is positive by submodularity of V . Hence, the maximum of Fλ over the interval given in
(14) is attained at one of its limits, at which either the i-th or j-th component of λε becomes
integral.

B.3 Proof of Proposition 1

The lower bound on L∗c follows immediately from the fact that L extends V to [0, 1]n. For the
upper bound, let us consider a feasible point λ∗ ∈ Dc such that L(λ∗) = L∗c . By applying Lemma 1
and Lemma 2 we get a feasible point λ̄ with at most one fractional component such that

L(λ∗) ≤ 2F (λ̄). (15)

Let λi denote the fractional component of λ̄ and S denote the set whose indicator vector is λ̄−λiei.
By definition of the multi-linear extension F :

F (λ̄) = (1− λi)V (S) + λiV (S ∪ {i}).

By submodularity of V , V (S ∪ {i}) ≤ V (S) + V ({i}). Hence,

F (λ̄) ≤ V (S) + V (i).

Note that since λ̄ is feasible, S is also feasible and V (S) ≤ OPT . Hence,

F (λ̄) ≤ OPT + max
i∈N

V (i). (16)

Together, (15) and (16) imply the proposition.

C Proof of Proposition 2

We proceed by showing that the optimal value of (Pc,α) is close to the optimal value of (Pc)
(Lemma 6) while being well-behaved with respect to changes of the cost (Lemma 7). These lemmas
together imply Proposition 2.

Note that the choice of α given in Algorithm 1 implies that α < 1
n . This in turn implies that

the feasible set Dc,α of (Pc,α) is non-empty: it contains the strictly feasible point λ = ( 1
n , . . . ,

1
n).

Lemma 5. Let ∂iL(λ) denote the i-th derivative of L, for i ∈ {1, . . . , n}, then:

∀λ ∈ [0, 1]n,
b

2n
≤ ∂iL(λ) ≤ 1

Proof. Recall that we had defined:

Ã(λ) ≡ Id +

n∑
i=1

λixix
T
i and A(S) ≡ Id +

∑
i∈S

xix
T
i
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Let us also define Ak ≡ A({x1, . . . , xk}). We have ∂iL(λ) = xTi Ã(λ)−1xi. Since Ã(λ) � Id,
∂iL(λ) ≤ xTi xi ≤ 1, which is the right-hand side of the lemma. For the left-hand side, note that
Ã(λ) � An. Hence ∂iL(λ) ≥ xTi A−1

n xi. Using the Sherman-Morrison formula [28], for all k ≥ 1:

xTi A
−1
k xi = xTi A

−1
k−1xi −

(xTi A
−1
k−1xk)

2

1 + xTkA
−1
k−1xk

By the Cauchy-Schwarz inequality:

(xTi A
−1
k−1xk)

2 ≤ xTi A−1
k−1xi x

T
kA
−1
k−1xk

Hence:

xTi A
−1
k xi ≥ xTi A−1

k−1xi − x
T
i A
−1
k−1xi

xTkA
−1
k−1xk

1 + xTkA
−1
k−1xk

But xTkA
−1
k−1xk ≤ 1 and a

1+a ≤
1
2 if 0 ≤ a ≤ 1, so:

xTi A
−1
k xi ≥ xTi A−1

k−1xi −
1

2
xTi A

−1
k−1xi ≥

xTi A
−1
k−1xi

2

By induction:

xTi A
−1
n xi ≥

xTi xi
2n

Using that xTi xi ≥ b concludes the proof of the left-hand side of the lemma’s inequality.

Let us introduce the Lagrangian of problem (Pc,α):

Lc,α(λ, µ, ν, ξ) ≡ L(λ) + µT (λ− α1) + νT (1− λ) + ξ(B − cTλ)

so that:
L∗c,α = min

µ,ν,ξ≥0
max
λ
Lc,α(λ, µ, ν, ξ)

Similarly, we define Lc ≡ Lc,0 the lagrangian of (Pc).
Let λ∗ be primal optimal for (Pc,α), and (µ∗, ν∗, ξ∗) be dual optimal for the same problem.

In addition to primal and dual feasibility, the Karush-Kuhn-Tucker (KKT) conditions [7] give
∀i ∈ {1, . . . , n}:

∂iL(λ∗) + µ∗i − ν∗i − ξ∗ci = 0

µ∗i (λ
∗
i − α) = 0

ν∗i (1− λ∗i ) = 0

Lemma 6. We have:
L∗c − αn2 ≤ L∗c,α ≤ L∗c

In particular, |L∗c − L∗c,α| ≤ αn2.

Proof. α 7→ L∗c,α is a decreasing function as it is the maximum value of the L function over a
set-decreasing domain, which gives the rightmost inequality.

Let µ∗, ν∗, ξ∗ be dual optimal for (Pc,α), that is:

L∗c,α = max
λ
Lc,α(λ, µ∗, ν∗, ξ∗)
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Note that Lc,α(λ, µ∗, ν∗, ξ∗) = Lc(λ, µ∗, ν∗, ξ∗)−α1Tµ∗, and that for any λ feasible for problem
(Pc), Lc(λ, µ∗, ν∗, ξ∗) ≥ L(λ). Hence,

L∗c,α ≥ L(λ)− α1Tµ∗

for any λ feasible for (Pc). In particular, for λ primal optimal for (Pc):

L∗c,α ≥ L∗c − α1Tµ∗ (17)

Let us denote by the M the support of µ∗, that is M ≡ {i|µ∗i > 0}, and by λ∗ a primal optimal
point for (Pc,α). From the KKT conditions we see that:

M ⊆ {i|λ∗i = α}

Let us first assume that |M | = 0, then 1Tµ∗ = 0 and the lemma follows.
We will now assume that |M | ≥ 1. In this case cTλ∗ = B, otherwise we could increase the

coordinates of λ∗ in M , which would increase the value of the objective function and contradict the
optimality of λ∗. Note also, that |M | ≤ n− 1, otherwise, since α < 1

n , we would have cTλ∗ < B,
which again contradicts the optimality of λ∗. Let us write:

B = cTλ∗ = α
∑
i∈M

ci +
∑
i∈M̄

λ∗i ci ≤ α|M |B + (n− |M |) max
i∈M̄

ci

That is:

max
i∈M̄

ci ≥
B −B|M |α
n− |M |

>
B

n
(18)

where the last inequality uses again that α < 1
n . From the KKT conditions, we see that for i ∈M ,

ν∗i = 0 and:
µ∗i = ξ∗ci − ∂iL(λ∗) ≤ ξ∗ci ≤ ξ∗B (19)

since ∂iL(λ∗) ≥ 0 and ci ≤ 1.
Furthermore, using the KKT conditions again, we have that:

ξ∗ ≤ inf
i∈M̄

∂iL(λ∗)

ci
≤ inf

i∈M̄

1

ci
=

1

maxi∈M̄ ci
(20)

where the last inequality uses Lemma 5. Combining (18), (19) and (20), we get that:∑
i∈M

µ∗i ≤ |M |ξ∗B ≤ nξ∗B ≤
nB

maxi∈M̄ ci
≤ n2

This implies that:

1Tµ∗ =

n∑
i=1

µ∗i =
∑
i∈M

µ∗i ≤ n2

which along with (17) proves the lemma.

Lemma 7. If c′ = (c′i, c−i), with c′i ≤ ci − δ, we have:

L∗c′,α ≥ L∗c,α +
αδb

2nB
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Proof. Let µ∗, ν∗, ξ∗ be dual optimal for (Pc′,α). Noting that:

Lc′,α(λ, µ∗, ν∗, ξ∗) ≥ Lc,α(λ, µ∗, ν∗, ξ∗) + λiξ
∗δ,

we get similarly to Lemma 6:
L∗c′,α ≥ L(λ) + λiξ

∗δ

for any λ feasible for (Pc,α). In particular, for λ∗ primal optimal for (Pc,α):

L∗c′,α ≥ L∗c,α + αξ∗δ

since λ∗i ≥ α.
Using the KKT conditions for (Pc′,α), we can write:

ξ∗ = inf
i:λ
′∗
i >α

xTi S(λ
′∗)−1xi
c′i

with λ
′∗ optimal for (Pc′,α). Since c′i ≤ B, using Lemma 5, we get that ξ∗ ≥ b

2nB , which concludes
the proof.

We are now ready to conclude the proof of Proposition 2. Let L̂∗c,α be the approximation
computed by Algorithm 1.

1. using Lemma 6:

|L̂∗c,α − L∗c | ≤ |L̂∗c,α − L∗c,α|+ |L∗c,α − L∗c | ≤
αδ

B
+ αn2 = ε

which proves the ε-accuracy.

2. for the δ-decreasingness, let c′ = (c′i, c−i) with c′i ≤ ci − δ, then:

L̂∗c′,α ≥ L∗c′,α −
αδb

2n+1B
≥ L∗c,α +

αδb

2n+1B
≥ L̂∗c,α

where the first and last inequalities follow from the accuracy of the approximation, and the
inner inequality follows from Lemma 7.

3. the accuracy of the approximation L̂∗c,α is:

ε′ =
εδb

2n+1(δ + n2B)

Note that:

log log(ε′)−1 = O

(
log log

B

εδb
+ log n

)
Using Lemma 3 concludes the proof of the running time.
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D Budget Feasible Reverse Auction Mechanisms

We review in this appendix the formal definition of a budget feasible reverse auction mechanisms,
as introduced by Singer [29]. We depart from the definitions in [29] only in considering δ-truthful,
rather than truthful, mechanisms.

Given a budget B and a value function V : 2N → R+, a mechanism M = (S, p) comprises (a)
an allocation function S : Rn+ → 2N and (b) a payment function p : Rn+ → Rn+. Let si(c) = 1i∈S(c)

be the binary indicator of i ∈ S(c). We seek mechanisms that have the following properties [29]:

• Normalization. Unallocated experiments receive zero payments: si(c) = 0 implies pi(c) = 0.

• Individual Rationality. Payments for allocated experiments exceed costs: pi(c) ≥ ci · si(c).

• No Positive Transfers. Payments are non-negative: pi(c) ≥ 0.

• δ-Truthfulness. Reporting one’s true cost is an almost-dominant [27] strategy. Formally, let
c−i be a vector of costs of all agents except i. Then, pi(ci, c−i)− si(ci, c−i) · ci ≥ pi(c′i, c−i)−
si(c

′
i, c−i) · ci, for every i ∈ N and every two cost vectors (ci, c−i) and (c′i, c−i) such that

|ci − c′i| > δ. The mechanism is truthful if δ = 0.

• Budget Feasibility. The sum of the payments should not exceed the budget constraint, i.e.∑
i∈N pi(c) ≤ B.

• (α, β)-approximation. The value of the allocated set should not be too far from the optimum
value of the full information case, as given by (7). Formally, there must exist some α ≥ 1 and
β > 0 such that OPT ≤ αV (S(p)) + β, where OPT = maxS⊆N

{
V (S) |

∑
i∈S ci ≤ B

}
.

• Computational Efficiency. The allocation and payment function should be computable in
time polynomial in various parameters.

E Proof of Lemma 4

Using the notations of Lemma 4, we want to prove that if ci and c′i are two different costs reported
by user i with |ci − c′i| ≥ δ, and if c−i is any vector of costs reported by the other users:

pi(ci, c−i)− si(ci, c−i) · ci ≥ pi(c′i, c−i)− si(c′i, c−i) · ci (21)

We distinguish four cases depending on the value of si(ci, c−i) and s′i(c
′
i, c−i).

1. si(ci, c−i) = si(c
′
i, c−i) = 0. Since the mechanism is normalized we have pi(ci, c−i) =

pi(c
′
i, c−i) = 0 and (21) is true.

2. si(c
′
i, c−i) = si(ci, c−i) = 1. Note that i is paid her threshold payment when allocated, and

since this payment does not depend on i’s reported cost, (21) is true (and is in fact an
equality).

3. si(c
′
i, c−i) = 0 and si(ci, c−i) = 1. We then have pi(c

′
i, c−i) = 0 by normalization and (21)

follows from individual rationality.

4. si(c
′
i, c−i) = 1 and si(ci, c−i) = 0. By δ-decreasingness of si, ci ≥ c′i + δ, and si(ci, c−i) = 0

implies that i’s threshold payment is less than ci, i.e. pi(c
′
i, c−i) ≤ ci. This last inequality is

equivalent to (21) in this final case.
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Algorithm 2 Mechanism for EDP

Input: B ∈ R+,c ∈ [0, B]n, δ ∈ (0, 1], ε ∈ (0, 1]
1: i∗ ← arg maxj∈N V (j)
2: OPT ′−i∗ ← using Proposition 2, compute a ε-accurate, δ-decreasing approximation of

L∗c−i∗ ≡ maxλ∈[0,1]n{L(λ) | λi∗ = 0,
∑

i∈N\{i∗} ciλi ≤ B}

3: C ← 8e−1+
√

64e2−24e+9
2(e−1)

4: if OPT ′−i∗ < C · V (i∗) then
5: return {i∗}
6: else
7: i← arg max1≤j≤n

V (j)
cj

8: SG ← ∅
9: while ci ≤ B

2
V (SG∪{i})−V (SG)

V (SG∪{i}) do

10: SG ← SG ∪ {i}
11: i← arg maxj∈N\SG

V (SG∪{j})−V (SG)
cj

12: end while
13: return SG
14: end if

F Proof of Theorem 1

We now present the proof of Theorem 1. Our mechanism for EDP is composed of (a) the allocation
function presented in Algorithm 2, and (b) the payment function which pays each allocated agent i
her threshold payment as described in Myerson’s Theorem. In the case where {i∗} is the allocated
set, her threshold payment is B. A closed-form formula for threshold payments when SG is the
allocated set can be found in [29].

We use the notation OPT−i∗ to denote the optimal value of EDP when the maximum value
element i∗ is excluded. We also use OPT ′−i∗ to denote the approximation computed by the δ-
decreasing, ε-accurate approximation of L∗c−i∗ , as defined in Algorithm 2.

The properties of δ-truthfulness and individual rationality follow from δ-monotonicity and
threshold payments. δ-monotonicity and budget feasibility follow similar steps as the analysis
of Chen et al. [11], adapted to account for δ-monotonicity:

Lemma 8. Our mechanism for EDP is δ-monotone and budget feasible.

Proof. Consider an agent i with cost ci that is selected by the mechanism, and suppose that she
reports a cost c′i ≤ ci − δ while all other costs stay the same. Suppose that when i reports ci,
OPT ′−i∗ ≥ CV (i∗); then, as si(ci, c−i) = 1, i ∈ SG. By reporting cost c′i, i may be selected at
an earlier iteration of the greedy algorithm. Denote by Si (resp. S′i) the set to which i is added
when reporting cost ci (resp. c′i). We have S′i ⊆ Si; in addition, S′i ⊆ S′G, the set selected by the
greedy algorithm under (c′i, c−i); if not, then greedy selection would terminate prior to selecting i
also when she reports ci, a contradiction. Moreover, we have

c′i ≤ ci ≤
B

2

V (Si ∪ {i})− V (Si)

V (Si ∪ {i})
≤ B

2

V (S′i ∪ {i})− V (S′i)

V (S′i ∪ {i})

by the monotonicity and submodularity of V . Hence i ∈ S′G. By δ-decreasingness of OPT ′−i∗ , under
c′i ≤ ci − δ the greedy set is still allocated and si(c

′
i, c−i) = 1. Suppose now that when i reports ci,
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OPT ′−i∗ < CV (i∗). Then si(ci, c−i) = 1 iff i = i∗. Reporting c′i∗ ≤ ci∗ does not change V (i∗) nor
OPT ′−i∗ ≤ CV (i∗); thus si∗(c

′
i∗ , c−i∗) = 1, so the mechanism is monotone.

To show budget feasibility, suppose that OPT ′−i∗ < CV (i∗). Then the mechanism selects i∗.
Since the bid of i∗ does not affect the above condition, the threshold payment of i∗ is B and the
mechanism is budget feasible. Suppose that OPT ′−i∗ ≥ CV (i∗). Denote by SG the set selected by
the greedy algorithm, and for i ∈ SG, denote by Si the subset of the solution set that was selected
by the greedy algorithm just prior to the addition of i—both sets determined for the present cost
vector c. Then for any submodular function V , and for all i ∈ SG:

if c′i ≥
V (Si ∪ {i})− V (S)

V (SG)
B then si(c

′
i, c−i) = 0 (22)

In other words, if i increases her cost to a value higher than V (Si∪{i})−V (S)
V (SG) , she will cease to be in

the selected set SG. As a result, (22) implies that the threshold payment of user i is bounded by
the above quantity. Hence, the total payment is bounded by the telescopic sum:∑

i∈SG

V (Si ∪ {i})− V (Si)

V (SG)
B =

V (SG)− V (∅)
V (SG)

B = B

The complexity of the mechanism is given by the following lemma.

Lemma 9 (Complexity). For any ε > 0 and any δ > 0, the complexity of the mechanism is
O
(
poly(n, d, log log B

bεδ )
)

Proof. The value function V in (6a) can be computed in time O(poly(n, d)) and the mechanism
only involves a linear number of queries to the function V . By Proposition 2, line 2 of Algorithm 2
can be computed in time O(poly(n, d, log log B

bεδ )). Hence the allocation function’s complexity is as
stated.

Finally, we prove the approximation ratio of the mechanism. We use the following lemma from
[11] which bounds OPT in terms of the value of SG, as computed in Algorithm 2, and i∗, the
element of maximum value.

Lemma 10 ([11]). Let SG be the set computed in Algorithm 2 and let i∗ = arg maxi∈N V ({i}). We
have:

OPT ≤ e

e− 1

(
3V (SG) + 2V (i∗)

)
.

Using Proposition 1 and Lemma 10 we can complete the proof of Theorem 1 by showing that,
for any ε > 0, if OPT ′−i, the optimal value of L when i∗ is excluded from N , has been computed
to a precision ε, then the set S∗ allocated by the mechanism is such that:

OPT ≤ 10e−3 +
√

64e2−24e+9

2(e−1)
V (S∗)+ε. (23)

To see this, let L∗c−i∗ be the maximum value of L subject to λi∗ = 0,
∑

i∈N\i∗ ci ≤ B. From line 2

of Algorithm 2, we have L∗c−i∗ − ε ≤ OPT
′
−i∗ ≤ L∗c−i∗ + ε.

If the condition on line 4 of the algorithm holds then, from the lower bound in Proposition 1,

V (i∗) ≥ 1

C
L∗c−i∗ −

ε

C
≥ 1

C
OPT−i∗ −

ε

C
.

22



Also, OPT ≤ OPT−i∗ + V (i∗), hence,

OPT ≤ (1 + C)V (i∗) + ε. (24)

If the condition on line 4 does not hold, by observing that L∗c−i∗ ≤ L∗c and the upper bound of
Proposition 1, we get

V (i∗) ≤ 1

C
L∗c−i∗ +

ε

C
≤ 1

C

(
2OPT + 2V (i∗)

)
+
ε

C
.

Applying Lemma 10,

V (i∗) ≤ 1

C

(
2e

e− 1

(
3V (SG) + 2V (i∗)

)
+ 2V (i∗)

)
+
ε

C
.

Note that C satifies C(e− 1)− 6e+ 2 > 0, hence

V (i∗) ≤ 6e

C(e− 1)− 6e+ 2
V (SG) +

(e− 1)ε

C(e− 1)− 6e+ 2
.

Finally, using Lemma 10 again, we get

OPT ≤ 3e

e− 1

(
1 +

4e

C(e− 1)− 6e+ 2

)
V (SG) +

2eε

C(e− 1)− 6e+ 2
. (25)

Our choice of C, namely,

C =
8e− 1 +

√
64e2 − 24e+ 9

2(e− 1)
, (26)

is precisely to minimize the maximum among the coefficients of Vi∗ and V (SG) in (24) and (25),
respectively. Indeed, consider:

max

(
1 + C,

3e

e− 1

(
1 +

4e

C(e− 1)− 6e+ 2

))
.

This function has two minima, only one of those is such that C(e− 1)− 6e+ 2 ≥ 0. This minimum
is precisely (26). For this minimum, 2eε

C(e−1)−6e+2 ≤ ε. Placing the expression of C in (24) and (25)

gives the approximation ratio in (23), and concludes the proof of Theorem 1.

G Proof of Theorem 2

Suppose, for contradiction, that such a mechanism exists. From Myerson’s Theorem [23], a single
parameter auction is truthful if and only if the allocation function is monotone and agents are paid
theshold payments. Consider two experiments with dimension d = 2, such that x1 = e1 = [1, 0],
x2 = e2 = [0, 1] and c1 = c2 = B/2 + ε. Then, one of the two experiments, say, x1, must be in the
set selected by the mechanism, otherwise the ratio is unbounded, a contradiction. If x1 lowers its
value to B/2 − ε, by monotonicity it remains in the solution; by threshold payment, it is paid at
least B/2 + ε. So x2 is not included in the solution by budget feasibility and individual rationality:
hence, the selected set attains a value log 2, while the optimal value is 2 log 2.
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H Extensions

H.1 Strategic Experimental Design with Non-Homotropic Prior

In the general case where the prior distribution of the experimenter on the model β in (2) is not
homotropic and has a generic covariance matrix R, the value function takes the general form given
by (5).

Let us denote by λ (resp. Λ) the smallest (resp. largest) eigenvalue ofR, applying the mechanism
described in Algorithm 2 and adapting the analysis of the approximation ratio mutatis mutandis,
we get the following result which extends Theorem 1.

Theorem 3. For any δ ∈ (0, 1], and any ε ∈ (0, 1], there exists a δ-truthful, individually ra-
tional and budget feasible mechanism for the objective function V given by (5) that runs in time
O(poly(n, d, log log BΛ

εδbλ)) and allocates a set S∗ such that:

OPT ≤
(

6e− 2

e− 1

1/λ

log(1 + 1/λ)
+ 4.66

)
V (S∗) + ε.

H.2 Non-Bayesian Setting

In the non-bayesian setting, i.e. when the experimenter has no prior distribution on the model,
the covariance matrix R is the zero matrix. In this case, the ridge regression estimation procedure
(3) reduces to simple least squares (i.e., linear regression), and the D-optimality criterion reduces
to the entropy of β̂, given by:

V (S) = log det(XT
SXS) (27)

A natural question which arises is whether it is possible to design a deterministic mechanism in this
setting. Since (27) may take arbitrarily small negative values, to define a meaningful approximation
one would consider the (equivalent) maximization of V (S) = detXT

SXS . However, the following
lower bound implies that such an optimization goal cannot be attained under the constraints of
truthfulness, budget feasibility, and individual rationality.

Lemma 11. For any M > 1, there is no M -approximate, truthful, budget feasible, individually
rational mechanism for a budget feasible reverse auction with value function V (S) = detXT

SXS.

Proof. From Myerson’s Theorem [23], a single parameter auction is truthful if and only if the
allocation function is monotone and agents are paid theshold payments. Given M > 1, consider
n = 4 experiments of dimension d = 2. For e1, e2 the standard basis vectors in R2, let x1 = e1,
x2 = e1, and x3 = δe1, x4 = δe2, where 0 < δ < 1/(M−1). Moreover, assume that c1 = c2 = 0.5+ε,
while c3 = c4 = ε, for some small ε > 0. Suppose, for the sake of contradiction, that there exists
a mechanism with approximation ratio M . Then, it must include in the solution S at least one
of x1 or x2: if not, then V (S) ≤ δ2, while OPT = (1 + δ)δ, a contradiction. Suppose thus that
the solution contains x1. By the monotonicity property, if the cost of experiment x1 reduces to
B/2 − 3ε, x1 will still be in the solution. By threshold payments, experiment x1 receives in this
case a payment that is at least B/2 + ε. By individual rationality and budget feasibility, x2 cannot
be included in the solution, so V (S) is at most (1 + δ)δ. However, the optimal solution includes all
experiments, and yields OPT = (1 + δ)2, a contradiction.
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H.3 Beyond Linear Models

Selecting experiments that maximize the information gain in the Bayesian setup leads to a natural
generalization to other learning examples beyond linear regression. In particular, consider the
following variant of the standard PAC learning setup [32]: assume that the features xi, i ∈ N take
values in some generic set Ω, called the query space. Measurements yi ∈ R are given by

yi = h(xi) + εi (28)

where h ∈ H for some subset H of all possible mappings h : Ω → R, called the hypothesis space.
As before, we assume that the experimenter has a prior distribution on the hypothesis h ∈ H;
we also assume that εi are random variables in R, not necessarily identically distributed, that are
independent conditioned on h. As before, the features xi are public, and the goal of the experimenter
is to (a) retrieve measurements yi and (b) estimate h as accurately as possible.

This model is quite broad, and captures many classic machine learning tasks; we give a few
concrete examples below:

1. Generalized Linear Regression. In this case, Ω = Rd, H is the set of linear maps {h(x) =
βTx s.t. β ∈ Rd}, and εi are independent zero-mean variables (not necessarily identically
distributed).

2. Learning Binary Functions with Bernoulli Noise. When learning a binary function
under noise, the experimenter wishes to determine a binary function h by testing its output
on differrent inputs; however, the output may be corrupted with probability p. Formally,
Ω = {0, 1}d, H is some subset of binary functions h : Ω→ {0, 1}, and

εi =

{
0, w. prob. 1− p
h̄(xi)− h(xi), w. prob. p

3. Logistic Regression. Logistic regression aims to learn a hyperplane separating +1–labeled
values from −1–labeled values; again, values can be corrupted, and the probability that a
label is flipped drops with the distance from the hyperplane. Formally, Ω = Rd, H is the set
of maps {h(x) = sign(βTx) for some β ∈ Rd}, and εi are independent conditioned on β such
that

εi =

−2 · 1βT x>0, w. prob. 1

1+eβT x

+2 · 1βT x<0, w. prob. eβ
T x

1+eβT x

We can again define the information gain as an objective to maximize:

V (S) = H(h)−H(h | yS), S ⊆ N (29)

This is a monotone set function, and it clearly satisfies V (∅) = 0. In general, the information gain
is not a submodular function. However, when the errors εi are independent conditioned on h, the
following lemma holds:

Lemma 12. The value function given by the information gain (29) is submodular.

Proof. A more general statement for graphical models is shown in [19]; in short, using the chain
rule for the conditional entropy we get:

V (S) = H(yS)−H(yS | h) = H(yS)−
∑
i∈S

H(yi | h) (30)
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where the second equality comes from the independence of the yi’s conditioned on h. Recall that
the joint entropy of a set of random variables is a submodular function. Thus, the value function
is written in (30) as the sum of a submodular function and a modular function.

This lemma implies that learning an arbitrary hypothesis, under an arbitrary prior when noise is
conditionally independent leads to a submodular value function. Hence, we can apply the previously
known results by Singer [29] and Chen et al. [11] to get the following corollary:

Corollary 1. For Bayesian experimental design with an objective given by the information gain
(29), there exists a randomized, polynomial-time, budget feasible, individually rational, and univer-
sally truthful mechanism with a 7.91 approximation ratio, in expectation.

In cases where maximizing (29) can be done in polynomial time in the full-information setup,
there exists a deterministic, polynomial-time, budget feasible, individually rational, and truthful
mechanism for Bayesian experimental design with an 8.34 approximation ratio.

Note however that, in many scenarios covered by this model (including the last two examples
above), even computing the entropy under a given set might be a hard task—i.e., the value query
model may not apply. Hence, identifying learning tasks in the above class for which truthful or
universally truthful constant approximation mechanisms exist, or studying these problems in the
context of stronger query models such as the demand model [12, 6] remains an interesting open
question.

I Non-Truthfulness of the Maximum Operator

We give a counterxample of the truthfulness of the maximum mechanism whose allocation rule is
defined in (8) when the value function V is as defined in (1). We denote by (e1, e2, e3) the canonical
basis of R3 and define the following feature vectors: x1 = e1, x2 = 1√

2
cos π5 e2+ 1√

2
sin π

5 e3, x3 = 1√
2
e2

and x4 = 1
2e3, with associated costs c1 = 5

2 , c2 = c3 = 1 and c4 = 2
3 . We also assume that the

budget of the auctioneer is B = 5
2 .

Note that V (xi) = log(1 + ‖xi‖2), so x1 is the point of maximum value. Let us now compute
the output of the greedy heuristic. We have:

V (x1)

c1
' 0.277,

V (x2)

c2
=
V (x3)

c3
' 0.405,

V (x4)

c4
' 0.335 (31)

so the greedy heuristic will start by selecting x2 or x3. Without loss of generality, we can assume
that it selected x2. From the Sherman-Morrison formula we get:

V ({xi, xj})− V (xi) = log

(
1 + ‖xj‖2 −

〈xi, xj〉2

1 + ‖xi‖2

)
In particular, when xi and xj are orthogonal V ({xi, xj}) = V (xj). This allows us to compute:

V ({x2, x3})− V (x2)

c3
= log

(
1 +

1

2
− 1

6
cos2 π

5

)
' 0.329

V ({x2, x4})− V (x2)

c4
=

3

2
log

(
1 +

1

4
− 1

12
sin2 π

5

)
' 0.299

Note that at this point x1 cannot be selected without exceding the budget. Hence, the greedy
heuristic will add x3 to the greedy solution and returns the set {x2, x3} with value:

V ({x2, x3}) = V (x2) + V ({x2, x3})− V (x2) ' 0.734
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In contrast, V (x1) ' 0.693 so the mechanism will allocate to {x2, x3}.
Let us now assume that user 3 reduces her cost. It follows from (31) that the greedy heuristic

will start by adding her to the greedy solution. Furthermore:

V ({x3, x2})− V (x3)

c2
= log

(
1 +

1

2
− 1

6
cos2 π

5

)
' 0.329

V ({x3, x4})− V (x3)

c4
=

3

2
log

(
1 +

1

4

)
' 0.334

Hence, the greedy solution will be {x3, x4} with value:

V ({x3, x4}) = V (x3) + V ({x3, x4})− V (x3) ' 0.628

As a consequence the mechanism will allocate to user 1 in this case. By reducing her cost, user 3,
who was previously allocated, is now rejected by the mechanism. This contradicts the monotonicity
of the allocation rule, hence its truthfulness by Myerson’s theorem [23], which states that a single
parameter auction is truthful if and only if the allocation function is monotone and agents are paid
theshold payments.
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